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SECSC vision for science that “"adds up”

+ DOTI Secretarial Order 3289: Producing actionable
science that helps individuals and organizations
understand and adapt to global change.

- Characterize and understand the effects of climate
change on fish, wildlife, and habitat

- Provide research-based information to support
landscape scale adaptive management decisions

-+ Today

- Vulnerability assessment context for actionable
science

- Challenges: wicked problems
- SECSC niche



Vulnerability Assessment

Vulnerability = f (exposure, sensitivity,
adaptive capacity)

Vulnerability is context specific
We measure the vulnerability:

- OF a measureable characteristic of
something we care about

* TO a specific stressor

Examples:
Vulnerability of corn prices to drought
Vulnerability of coastal highways to sea-level rise
Vulnerability of a species in the face of habitat loss
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Actionable science challenges

All aspects of this process for doing landscape-scale,
actionable science are complicated by "wicked problems”

Complex, coupled human-natural systems
‘Heterogeneous “landscapes”

*Scale mismatch

Adaptation response: a moving target

‘Managers, scientists, and public are not experienced with
handling these challenges



Coupled human-natural systems are influenced by processes
occurring at multiple spatial, temporal, and governance scales

Coastal Wetlands Respond
Dynamically to Environmental Change
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Governance scale
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Ca Framework for
adaptation response:
continuum of resistance
through resilience to
transformation (see

) Cape Island 7~

Cape Island Acreage 1949-2011

Stein et al 2013)

Example: Cape Romain NWR
\ SLR/erosion, and loggerhead
turtles
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/ B Loss: 779 acres Erosion causes ' Z 20011
B = f\! P Gain: 216 acres mOr'TC(“Ty in sea TUI"T'C -
: Net change: -563 acres nests on Cape Island




General lack of preparation on part of decision
makers, scientists, and public for making wise
decisions in the face of these challenges

Mental maps don't account for multi-scale complexity

- Deadling with broad scale change (space and time) that is noisy
at the scale we experience it.
 E.g., weather versus climate

- Impressions of change based on recent experience
(availability bias)

Thinking fast-thinking slow

- Thinking fast: short term recognition of risks and rewards

- Thinking slow: longer term recognition of risks and rewards

General scientific literacy

- Short term (time and space) relations between stressors and
response

- Longer term (time and space) ; see Mental Maps



SECSC "“actionable science” niche

(activities that wouldn't happen without
the NCSU-USGS collaboration)

Our understanding of this niche is evolving...

From primarily "standard” climate science...

- impacts of climate/land use stressors on endpoints (FY11/12
projects); state of science syntheses

..toward a "conversation and listening"-directed
science model...science focused by what people care
about.

- Continue to discuss and understand the challenges above
- Decision focused research projects

- Broader public conversations and education
- Training the next generation of scientists: GCF program



Thank you!

Jerry McMahon
gmcmahon@usgs.gov



GETTING MORE ACTION
OUT OF ‘ACTIONABLE
SCIENCE’

A decision analytic approach to
hatural resource management
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ACTIONABLE SCIENCE

Following a decade of appeals for ‘actionable
science’ (Palmer, et al. 2005)

Science in environmental policy
‘more science...better science...communication’

Concern: more effective science



Common 2-step Approach:

Scientific Involvement in Management

“More science ... better science ... effective communication”

(1) Scientist collects information (conducts
science) and provides results to managers

(2) Manager uses these results to make wise

management decisions
WH/\T DO WE WAN!

* Intellectual ‘displacement EVIDENCE EASED
behavior’ JWHER VD e o

AFTER PEER RV




Integrated Approach:

Scientific Involvement in Management

“Effective communication ... better science”

Scientist and manager work together in the
decision-making context

Focus is on information most useful to
management decisions

Consideration of appropriate scales, including
organizational scale

Science remains hypothesis-driven

Policy alternatives included when designing
research to understand system response



DECISION ANALYTIC APPROACH

* Decision maker(s) & stakeholders
 Values - fundamental objectives

* Matching of scales
* Alternative Actions

* Predictive Models
* link actions to objectives
* Key uncertainties

* Integration of parts

* Trade-off analysis
(optimization)



ILLUSTRATION BY EXAMPLE

Golden eagle management, Denali National
Park




DECISION ANALYTIC APPROACH

* Decision maker(s) & stakeholders
e Values - fundamental objectives
* Matching of scales
* Alternative Actions

Framing challenges for Denali NP

Spatial, ecological &
governance scale mismatch




PROBLEM FRAMING - DECISION CONTEXT
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PROBLEM FRAMING - DECISION CONTEXT
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PROBLEM FRAMING - DECISION CONTEXT
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CONSEQUENCES & MODELS

* Predictive Models
* Uncertainty

Other
drivers E}
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CONSEQUENCES & MODELS
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SOLUTION: OPTIMIZATION/TRADE-OFF

* Integration of parts

* Trade-off analysis
(optimization)

Trade-off between conflicting objectives:
* Minimizing nesting disturbance
 Maximizing visitor access



OPTIMIZATION -CHALLENGES

Annual state-dependent decision

Current decision depends on occupancy state of
previous year & prediction

Recursive optimization to evaluate future
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BENEFITS OF DECISION ANALYSIS TO

‘ACTIONABLE SCIENCE’

Collaborative relationship between scientists
& policy makers

: -Martin, et al. 2009. Biological Conservation.
G 00 d sclence -Martin, et al. 2011. Conservation Biology.
-Eaton, et al. 2014. in Application of Threshold Concepts
in Natural Resource Decision Making. Springer.

Monitoring designed to target decision-
related uncertainties.

Maximize likelihood of implementation

Denali NP implemented adaptive management
plan in 2012
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The Earth is Warming



Carbon Dioxide Concentration
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Credit: NOAA/Scripps Institution of Oceanography

Because there are more greenhouse
gases in the atmosphere






CO, allows energy
from the sun to
pass through to
the earth




But earth’s returning L
energy is able to excite &2
CO,..keeps it from =5
escaping to space




Human Enhanced
Greenhouse Effect

More energy escapes Less energy escapes
into space e into space

Natural Greenhouse Effect

This is the Greenhouse Effect. It is what keeps
earth from being an ‘icebox’ planet.

Image: NPS



|
Natural Greenhouse Effect Human Enhanced

| Greenhouse Effect

More energy escapes Less energy escapes

ﬂ into space

into space

But we are now adding much more CO, into the
atmosphere which makes this effect stronger.




Atmospheric CO, (ppm)
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And now CO, in atmosphere may be higher
than any point in last 3 million years.




Atmospheric CO, (ppm)
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Global surface warming (°C)

Which leads to a warmer planet.

IPCC AR4 2007
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Sea Level Change (cm)
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And rising oceans.

Realclimate.org



Key Impacts from Temperature Rise

Hundreds of millions exposed to increased water stress
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Both of which will lead to all sorts of impacts.



Surface Warmming ()

WHERE ARE WE HEADING?

CO, (ppmv)
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HOW DOES THIS AFFECT DECISIONS?



Conservation Design
and Habitat Conservation in Puerto Rico







OBIJECTIVES

Preserve representative habitat



Develop Decision Framework to
Optimally Allocate Conservation Efforts

Where and when do we manage?
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Patch Attributes

(size, elevation, precip/temp)

Habitat Composition
(Opt, Suit, Mar)

Connectivity
(dispersal distance)

Agro-ecosystems

and
Quantity

N\

Connect or expand reserves,
reforestation, adopt better
land use practices; acquire,

non-acquisition designations

N

Habitat Quality
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Monitoring

LINKING ALTERNATIVES AND OBIJECTIVES



Roles and
Partnerships

NGOs/Private Citizens

Stakeholder Participation,
and Implementation
Partnerships

PRDNER

ITF/CLCC NCSU/NCCoop Unit

Habitat dynamics, DEC|S|OnS, D:()C:;gguzigiv;%k,
hydrology and urban . :
growth projections |mp|ementat|0n, trade O];]:élsupport
Monitoring

SECSC

Downscaled
climate
projections



CARIBBEAN
CLIMATE CHANGE PROJECTIONS

’

Map data Sources: Ezri, Delorme, NAVTEQ, TomTom, intermap, iPC, USGES, FAQ, NPS, NRCAN, GeoBase,

IGN, Kadaster NL, Ordnance Survey, Ezsri Japan, METI, Esri China (Hong Kong), and the GI5 User T |=*'ﬁ"'--.-'_{ll_l I
CE'I'T.'I'T.'L.'I".'I"_'.- L"[ Ir?l""‘.‘].'ll "" ”-'n. i
Data Source: Historical Global S0km: Climatic Research Unit and the Tyndall Centre. Mitchell et. al. e Bose

http:#icru. cei.cgiar.org/PDE/mitchelliones. pdf




1-4°C INCREASE BY 2100

Temperature change Caribbean (land and sea) December-February
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Current model consensus is for less
precipitation
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Precipitation change Caribbean (land and sea) October-March
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“ 1000 mb winds ond abs, vaorticity — July 2008
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We need high
resolution projections
needed for Puerto Rico
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21C-20C Tsfc and Rainfall Anomalies
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Local and regional features will mediate the larger
global and regional response to increasing CO,



Use ‘Downscaling’ to simulate or predict
local climate processes that GCMs cannot
resolve

Source: WMO



Downscaling Climate Projections
Simulating sub-grid-scale climate based on output from

global models

By explicit solving of process-
based physical dynamics of
the regional climate system

By developing a statistical
relationship between local
climate variables and global
model predictors

STATISTICAL DYNAMIC
DOWNSCALING DOWNSCALING

PROS: improve on AOGCM
simulations by simulating sub-
grid-scale processes; includes
CONS: dependent on dynamical changes in response
AOGCM performance and to large scale forcing

stability of large-to-small-
scale forcing over decadal
time scales

PROS: flexible, rapid,
larger ensemble size

CONS: expensive & time
consuming,
small ensemble size




Why dynamical downscaling

-

over Puerto Rico?
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Many More Physical Variables Available

e Surface

— Rainfall, Temperature, Humidity, winds, soil
moisture/temperature, runoff, evapotranspiration,
pressure

* Above canopy
— As above, plus others
— Mixing height, vertical winds
e Radiation
— Incoming, outgoing, diffuse, net, cloud fraction
* Diagnostic Variables
— Height of cloud base,
— Statistical : Heat Wave duration, extremes, percentiles, etc.



~ Stakeholae r//Qr'“ Op+0 Ferine




N
-
(<]
(<]

100 KM

Resolving Terrain is

critical

Data LDEO-Columbia, NSF, NOAA
Image Landsat

Data SIO, NOAA, U.S. Na

vy, NGA, GEBCO

L 7 o ' ~
KL -~ Ja . o Bl
l y -3 o g
2ok v e o o
g ¢
» ;:?,! 4 z
X §
%700 8 .
ﬁ}’ 800 900
“‘;’ g e
& e
4 i 5
o &
2000
) . =000
- , N >
P TR TR
» o \ s % .
3 e ) PR b ¥ “
e L o, O L
N L2 b

earth

Google




B

Google ear

Image Landsat

—Data SIO; NOAA. U.S. Navy. NGA. GEBCO




2025

21° 2024%" & )

2 KM

2023

Image © 2013 DigitalGlobe

Image U.S. Geological Survey GOOSIQ earth




Sample of downscaling for 1 week

WRF simulated 2—m average Temperature
January 4—-8 2005




Incorporate Uncertainty into Study Design

GCM uncertainty

—Downscale at least two different GCMs

—GFDL & CCSM = decent mean climate
and variability in the tropical Atlantic
and Pacific



Incorporate Uncertainty into Study Design

Emission Scenario Uncertainty

—Only use RCP 8.5, most aggressive fossil
fuel emission scenario

—May include one more scenario if time
and resources allow (RCP 2.6)



Incorporate Uncertainty into Study Design

Regional Climate Model uncertainty
—20 year historical simulations

—20 year future simulations (after 2040)
—2 regional Models (WRF, RSM)



Surface Warming (K)

WHERE ARE WE HEADING?
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WHERE ARE WE HEADING?

Actionable science can help
us achieve our ovjectives
through decision-relevant
oredictions
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